Исследования зарубежных ученых еще раз подтвердили достоверность моей теории этногенеза, теории о влиянии излучения сверхновых звезд на процессы зарождения и развития этносов на Земле и показали возможные физические механизмы этого влияния.

Влияние сверхновых и гамма-всплесков, солнечных вспышек, и космических лучей на земную окружающую среду.
Арнон Дар.

(Arnon Dar. Influence of Supernovae, gamma-ray bursts, solar flares, and cosmic rays on the terrestrial environment
Опубликовано в сборнике: Global Catastrophic Risks. Edited by Nick Bostrom, Milan M. Cirkovic, OXPORD UNIVERSITY PRESS, 2008)
……………….
2.5 Излучение от взрывов сверхновых.

Наиболее яростные события, которые, вероятно, происходили в солнечном окружении в течение геологического и исторического времени – это взрывы сверхновых. Такие взрывы – это яркая смерть либо массивных звёзд, следующая за гравитационным коллапсом их ядра (сверхновые коллапсары), либо белых карликов в бинарных системах, чья масса за счёт аккреции возросла сверх предела Чандрасекара (термоядерные сверхновые)
Сверхновые-коллапсары происходят, когда ядерное топливо в ядре массивной звезды с массой больше 8 солнечных истощается и больше не может поддерживать термальное давление, которое уравновешивает гравитационное давление вышележащих слоёв. Затем ядро коллапсирует в нейтронную звезду или звёздную чёрную дыру и высвобождает большое количество гравитационной энергии (~3 x 1053 erg), большая часть которой превращается в нейтрино и только несколько процентов – в кинетическую энергию извергаемой звёздной оболочки, которая содержит радиоизотопы, поставляющие большую часть энергии для излучения.
Термоядерная сверхновая представляет собой термоядерный взрыв белого карлика в двойной звёздной системе. Белые карлики представляют собой конечную точку эволюции звёзд с массами меньшими, чем 8 солнечных масс. Они обычно состоят из углерода или кислорода. Их массы не могут превосходит 1,4 массы Солнца. Белый карлик в бинарной звёздной системе может аккрецировать материал своей звезды компаньона, если они достаточно близки друг к другу за счёт гравитационного притяжения. Падающая материя со звезды компаньона заставляет белый карлик пересечь границу массы в 1.4 солнечной (называемой предел Чандрасекара) и коллапсировать гравитационно. Выделение гравитационной энергии приводит к росту температуры до уровня, на котором углерод и кислород начинают неконтролируемо вступать в термоядерную реакцию. В результате происходит термоядерный взрыв, который разрушает звезду полностью.
Если взрыв сверхновой произойдёт достаточно близко к Земле, он может иметь катастрофические последствия для ее биосферы. Потенциальные последствия взрыва сверхновой около Земли были рассмотрены рядом авторов (Ellis and Schramm, 1995; Ellis et al., 1996; Ruderman, 1979), и последняя работа предполагает, что наиболее важные эффекты будут вызваны их космическими лучами. В частности, их возможная роль в разрушении озонового слоя Земли и открытии земной биосферы для интенсивного облучения солнечными УФ лучами была подчёркнута в работе Ellis and Schramm, 1995; Ellis et al., 1996. В начале мы рассмотрим прямые радиационные риски, связанные с излучением сверхновой.
Среди новых элементов, которые возникают при взрыве сверхновой- коллапсара и термоядерной сверхновой – радиоактивный никель, который высвобождает огромные количества энергии среди остатков сверхновой. Большая часть этой энергии высвобождается среди остатков и излучается в виде видимого света. Однако свет сверхновой не представляет собой высокого риска. Самые яркие сверхновые достигают пика светимости в 10**43 эрг/сек через примерно пару недель после взрыва, и затем светимость убывает примерно экспоненциально с периодом «полураспада» в 77 дней (что соответствует периоду полураспада радиоактивного кобальта, возникающего в результате распада никеля).
Такая светимость на расстоянии 5 парсек от Земли в течение пары недель добавит примерно 1% к солнечному излучению, которое достигает Земли и не будет иметь никаких катастрофических последствий. Более того, средняя частота галактических сверхновых составляет примерно 1 раз в 50 лет (van den Bergh and Tammann, 1991). Большинство взрывов сверхновых случаются гораздо ближе к центру Галактики, чем проходит орбита Солнца. На основании наблюдаемого распределения галактических остатков сверхновых, и средней частоты взрывов сверхновых, вероятность того, что в течение ближайших 2 миллиардов лет (до того, как Солнце станет красным гигантом) солнечная система в своём галактическом движении пройдёт на расстоянии 15 световых лет от сверхновой, составляют менее 1%.
Прямые угрозы Земле от ультрафиолетового, рентгеновского и гамма излучения сверхновых и их остатков ещё меньше, поскольку атмосфера непрозрачна для этих излучений. Единственная серьёзная угроза состоит в возможном разрушении земного озонового слоя, за которым последует проникновение солнечного УФ излучения и поглощение видимого света окисью азота NO2 в атмосфере. Однако угроза со стороны сверхновых, находящихся на расстоянии более 30 световых лет, не превышает угрозу от солнечных вспышек. Озоновый слой часто повреждается солнечными вспышками и, судя по всему, восстанавливался относительно быстро.

2.6 Гамма-всплески

Гамма-всплески – это короткие вспышки гамма-лучей с энергией в диапазоне МэВ, которые происходят в наблюдаемой вселенной приблизительно 2-3 раза в день (см. например, Meegan and Fishman, 1995). Они делятся на различных класса. Примерно 75% - это длинные всплески с мягким спектром, которые длятся более чем 2 секунды, остальные – это короткие вспышки с жёстким спектром (SHB), которые длятся менее 2 секунд.
Всё больше накапливается свидетельств из наблюдений послесвечений длинных гамма-всплесков, что длинные всплески создаются высокорелятивисткими джетами, извергаемыми в момент смерти массивными звёздами при взрывах сверхновых.(см например Dar 2004 и ссылки в внутри этой статьи). Природа коротких гамма-всплесков только отчасти известна. Они не связаны со взрывами сверхновых какого-либо известного типа, и их энергия на три порядка меньше.
Thorsett (1995) первым высказался о потенциальном воздействии на атмосферу Земли и об ущербе биоте в результате жёстких рентгеновских и гамма-лучей из галактического гамма-всплеска, направленного на Землю, в то время как Dar и др. (1998) предположили, что основной ущерб от галактических гамма-всплесков происходит за счёт космических лучей, ускоренных джетами, которые созданы гамма-всплеском (Shaviv and Dar, 1995). В то время как потоки гамма-лучей и рентгеновских лучей от галактических гамма-всплесков, которые попадают на Землю, и их частота могут быть надёжным образом измерены на основании наблюдений гамма-всплесков и их связи со сверхновыми, это не верно для космических лучей, чьё излучение может быть оценено на основании сомнительных моделей. Следовательно, хотя эффекты от космических лучей могут быть гораздо более разрушительны, чем эффекты от гамма-лучей и рентгеновских лучей от того же самого события, другие авторы (e.g., Galante and Horvath, 2005; Melott et al., 2004; Scab and Wheeler, 2002; Smith et al., 2004; Thomas et al., 2005) предпочитают концентрироваться в основном на эффектах облучения гамма-лучами и рентгеновскими лучами.
Распределение взрывов сверхновых по галактике известно на основании распределения их остатков. Большинство взрывов сверхновых происходит в галактическом диске на галактоцентрических расстояниях, которые гораздо меньше, чем расстояние от Земли до центра галактики. Их среднее расстояние до Земли примерно 25 000 лет. На основании измеренного потока энергии от гамма-всплесков (энергии, которая достигает Земли на единицу площади) при известном красном смещении, было обнаружено, что средняя энергия излучения длинного гамма-всплеска составляет примерно 5 x 1053/dO/4п- эрг, где dO – телесный угол, освещаемый гамма-всплеском (угол излучения). Энергия излучения короткого гамма-всплеска меньше приблизительно на 2-3 порядка.
Если гамма-всплески в нашей галактике не отличаются от всплесков в других галактиках, то тогда их поток излучения пропорционален обратному квадрату расстояния. Если типичный галактический гамма-всплеск на расстоянии 25 000 световых лет будет направлен прямо на Землю, то тогда полушарие Земли, повёрнутое в сторону гамма-всплеска, будет освещено гамма-лучами с полным потоком 5 x 1053/4п d2 ~ 4 x 107 эрг/сек в течение 30 сек. Излучение и момент количества движения гамма-всплеска высвободится примерно внутри 70 г/кв.см верхнего слоя атмосферы (полная толщина атмосферы на уровне моря равна примерно 1000 г./кв.см.) Такие потоки разрушат озоновый слой и создадут мощную ударную волну, которая пойдёт вниз по атмосфере, вызывая гигантские глобальные штормы и сильные пожары. Smith et al. (2004) оценили, что доля от 2 x 10~3 до 4 x 10~2 потока энергии гамма-всплеска превратится в атмосфере в УФ поток на уровне земли.
Основной ущерб от УФ излучения терпят молекулы ДНК и РНК, которые впитывают это излучение.
Летальная доза УФ излучения составляет примерно 10**4 эрг/кв.см., делая гамма-всплеск на расстоянии 25 000 световых лет крайне смертельно опасным (e.g., Galante and Horvath, 2005) для того полушария, которое обращено к гамма-всплеску. Однако условия обитания могут предоставить защиту (под водой, под землёй, под крышей, и в затенённых областях) или при качественной защите, даваемой кожей, каковой является мех у животных и одежда у людей. Короткое время гамма-всплеска и отсутствие какого-либо предупреждающих сигналов делает спасение путём перемещения в укрытие или в тень или путём быстрого накрывания – нереалистичным для большинства видов.
Следует отметить, что мега-электрон-вольтное гамма-излучение гамма-всплеска может сопровождаться короткой вспышкой очень высоко-энергетичных гамма-лучей, которые в настоящий момент не могут быть зафиксированы ни с помощью спутников, наблюдающих в гамма-лучах и рентгеновских лучах (CGRO, BeppoSAX, HETE, Chandra, XMMNewton, Integral, SWIFT и межпланетная сеть), ни наземными гамма-телескопами высоких энергий, такими как HESS и Magic (по причине задержки во времени реакции). Такие вспышки гамма лучей в диапазоне энергий GeV и TeV, если их производит гамма-всплеск, могут быть зафиксированы широкоформатным космическим гамма телескопом (Gamma-ray Large Area Space Telescope (GLAST)), который будет запущен в космос 16 мая 2008 г. GeV-TeV гамма-лучи от относительно близкого гамма-всплеска могут создавать смертельные дозы атмосферных мюонов.

3. Угрозы от космических лучей.

Средняя плотность энергии галактических космических лучей подобна плотности света звёзд, космического микроволнового излучения и галактического магнитного поля и составляет примерно порядка 1 эВ/куб. см. Эта плотность энергии примерно на 8 порядков меньше, чем плотность солнечного света на расстоянии одной астрономической единицы от Солнца, то есть на Земле. Более того, космические лучи взаимодействуют с верхним слоем атмосферы и их энергия превращается в атмосферные ливни. Большинство частиц и гамма-лучей из атмосферных ливней задерживаются в атмосфере до того, как достигают уровня земли, и только вторичные мюоны и нейтрино, которые несут малую долю общей энергии достигают земли. Так что, на первый взгляд кажется, что галактические космические лучи не могут значительно воздействовать на жизнь на Земле. Но это не так. Всё больше накапливается свидетельств того, что даже умеренные изменения потока космических лучей, которые достигают атмосферы, имеют значительные космические эффекты, несмотря на их низкую плотность энергии. Эти данные приходят из двух источников:

1. Взаимодействие космических лучей с атомными ядрами в верхней атмосфере создаёт ливни вторичных частиц, некоторые из которых создают радиоактивные изотопы 14C and 10Be, которые достигают поверхности Земли или за счёт углеродного цикла (С14) или в результате дождя и снега (Be10). Поскольку это их единственный земной источник, их концентрация в кольцах деревьев, кернах льда и морских отложениях даёт хорошие данные об интенсивности галактических космических лучей, которые достигали атмосферы в прошлом. Они показывают чёткую корреляцию между климатическими изменениями и вариациями потока космических лучей в эпоху Голоцена.
2. Ионы, создаваемые космическими лучами, увеличивают количество возникающих низковысотных облаков (e.g., Carslaw et al. 2002). Из данных, собранных за последние 20 лет, спутниками и датчиками нейтронов, следует чёткая корреляция между глобальным облачным покровом и потоком космических лучей с энергиями больше 10 Гэв, которые проникают сквозь геомагнитное поле. Облачный покров снижает глобальный уровень освещённости в среднем на 30 Вт/кв.м., что составляет 13% от глобальной солнечной освещённости. Увеличение потока галактических космических лучей связывается с увеличением низкого облачного покрова, который увеличивает отражающую способность атмосферы и приводит к снижению температуры.

Космические лучи влияют на жизнь и другими способами:

1. Созданные космическими лучами атмосферные ливни из заряженных частиц вызывают разряды молний в атмосфере (Gurevich and Zybin, 2005). Эти ливни создают NO и NO2 путём прямой ионизации молекул, которые разрушают озон быстрее, чем он создаётся в разрядах. Уменьшение озона в атмосфере приводит к увеличению УФ излучения на поверхности.
2. Распад вторичных мезонов, создаваемых ливнями, приводит к возникновению высокоэнергетичных проникающих мюонов, которые достигают земли и проникают глубоко под землю и под воду. Небольшая доля энергетичных протонов и нейтронов из ливня, которая возрастает с ростом энергии начальной космической частицы, также достигает поверхности. В целом высокопроникающие вторичные мюоны ответственны примерно за 85% полной эквивалентной дозы, которые наносят космические лучи на уровне поверхности. Их взаимодействия, и взаимодействия их продуктов с электронами и ядрами в живых клетках, ионизируют атомы и разрывают молекулы и повреждают ДНК и РНК за счёт смещения электронов, атомов и ядер с их мест. Полная доза энергии, выделяющаяся из проникающих мюонов, которая приводит к 50% смертности в течение 30 дней составляет от 2.5 до 3 Грей (1 Гр= 10**4 эрг/гр.) Один космический мюон выделяет примерно 4 Мэв/гр. в живых клетках, и таким образом летальный поток космических мюонов составляет примерно 5*10**9 шт/кв.см, если он излучается в течение короткого времени (менее месяца). Чтобы подвергнуть такой дозе в течение месяца нормальный поток космических лучей должен возрасти примерно в 1000 раз на целый месяц.


Значительное увеличение потока космических лучей в течение длительных периодов времени может привести к глобальным климатическим катастрофам и подвергнуть жизнь на земле, под землёй и под водой опасным уровням радиации, что приведёт к раку и лейкемии. Однако большая часть галактических космических лучей имеет энергии менее 10 Гэв. Такие космические лучи, когда они проникают в гелиосферу, отражаются магнитным полем солнечного ветра до того, как они достигают окрестностей Земли и её геомагнитным полем до того, как они достигают земной атмосферы. Таким образом, поток галактических космических лучей, который достигает Земной атмосферы, модулируется вариациями солнечного ветра и земного магнитного поля. Жизнь на Земле адаптировалась к нормальному потоку космических лучей, который достигает ее атмосферы. Возможно, вызванные космическими лучами мутации живых клеток играли главную роль в эволюции и диверсификации жизни от первой клетки до нынешних миллионов видов. Любые достоверные утверждения о глобальном риске со стороны увеличения потока космических лучей должны демонстрировать, что ожидаемое увеличение больше, чем периодические изменения в потоке космических лучей, который достигает Земли, и связан с периодическими изменениями солнечной активности, геомагнитного поля и движения Земли, к которым земная жизнь уже адаптировалась.

3.2 Солнечная активность, космические лучи и глобальное потепление

Космические лучи – это главный физический механизм, влияющий на степень ионизации тропосферы (нижние 10 км атмосферы). Степень ионизации влияет на формирование центров конденсации, необходимых для формирования облаков в чистых морских условиях. Солнечный ветер – поток высокоэнергетичных частиц и связанного с ними магнитного поля от Солнца – становится сильнее и достигает больших расстояний в течение периодов высокой солнечной активности. Магнитное поле, которое несёт с собой солнечный ветер, отражает галактические космические лучи и предотвращает достижение большей частью из них земной атмосферы. Более активное Солнце препятствует таким образом формированию центров конденсации, и результатирующие морские низковысотные облака имеют более крупные капли, которые меньше отражают свет и меньше живут. Это уменьшение облачного покрытия и отражающей способности облаков уменьшает альбедо Земли. Соответственно, больше солнечного света достигает поверхности Земли и нагревает ее. Столкновения космических лучей в атмосфере создают 14С, который превращается в 14ССO2 и включается в кольца деревьев по мере их роста; год роста может быть точно определён методами дендрологии. Продукция 14С велика в периоды низкой солнечной магнитной активности и мала в периоды высокой активности. Это было использовано, чтобы установить солнечную активность за последние 8000 лет, после того, как было показано, что этот метод правильно предсказал количество солнечных пятен за последние 400 лет (Solanki et al., 2004). Количество таких пятен, которые являются проявлениями интенсивного магнитного поля на солнечной фотосфере, пропорционально солнечной активности. Удалось продемонстрировать, что нынешний эпизод большого числа пятен и очень высокого среднего уровня солнечной активности, который продолжается 70 лет, был наиболее сильным за последние 8000 лет. Более того, солнечная активность очень хорошо согласуется с данными по палеоклимату, подтверждая значительность влияния солнечной активности на глобальный климат. Используя данные по историческим вариациям климата и потока космических лучей Shaviv (2005) вычислил эмпирическое соотношение между потоком космических лучей и переменами глобальной температуры, и оценил, что вклад солнечной составляющей в потепление в 20 веке равен 0.50 ± 0.20°C из наблюдаемых 0.75 ± 0.15°C, из чего следует, что приблизительно две трети от наблюдаемого потепления связано с солнечной активностью, в то время как примерно одна треть связана с парниковым эффектом. Более того, возможно, что солнечная активность взаимодействующая с выбросами парниковых газов является более сильным источником глобального потепления, чем просто сумма этих двух климатических движущих сил.

3.5. Космические лучи от гамма-всплесков.

Радио, оптические и рентгеновские наблюдения с высоким пространственным разрешением показывают, что релятивистские джеты, которые выбрасываются квазарами и микро квазарами состоят из последовательностей плазмоидов (пушечных ядер) из обычной материи, чьё начальное расширение (судя по всему, со скоростью расширения, аналогичной скорости звука в релятивистском газе) заканчивается вскоре после старта (см. Dar and De Rujula, 2004 и ссылки в тексте). Фотометрические и спектроскопические наблюдения сверхновых в затухающем послесвечении недалёких гамма-всплесков и другие свойства гамма-всплесков и их послесвечения дают решительные свидетельства в пользу того, что длинные гамма-всплески создаются высоко-релятивистскими джетами из плазмоидов из обычной материи, выбрасываемых сверхновыми, как уже давно утверждалось моделью пушечных ядер гамма-всплесков (Cannonball (CB) Model of GRBs) (см. например, Dar, 2004, Dar & A. De Rujula 2004, "Magnetic field in galaxies, galaxy clusters, & intergalactic space in: Physical Review D 72, 123002-123006; Dar and De Rujula, 2004). Эти джеты из плазмоидов создают стрелообразный поток высокоэнергетичных космических лучей за счёт магнитного рассеивания ионизированных частиц межзвёздной среды перед ними. Такие пучки пушечных ядер из галактических гамма-всплесков могут пройти значительные галактические расстояния и могут быть гораздо более летальны, чем гамма-лучи. (Dar and De Rujula, 2001; Dar etal., 1998).
Пусть и = bc – это скорость высокорелятивистского пушечного ядра и 1/y = l/\/l - P2 – это фактор Лоренца. Для длинных гамма-всплесков у ~ 103 (v ~ 0.999999c!). По причине высокорелятивистского движения пушечных ядер, частицы межзвёздной материи , которые сметает пушечные ядра, входят в них с фактором Лоренца порядка y = 1000 с точки зрения системы отсчёта пушечных ядер. Эти частицы равномерно распределяются по всем направлениям и ускоряются турбулентными магнитными полями в пушечных ядрах (благодаря механизму, предложенному Энрико Ферми) до того, как они снова выбрасываются в межзвёздную среду. Высокорелятивисткое движение пушечных ядер еще больше увеличивает их энергию в y раз за счёт эффекта Доплера и перестраивает их изотропное распределение в узкий конический луч с углом открытия в ~ 1/y по направлению движения пушечных ядер в межзвёздной среде. Это релятивистское создание пучка зависит только от Лоренц фактора пушечного ядра, но не от массы рассеиваемых частиц или их энергии.
Окружающий межзвёздный газ почти прозрачен для космических лучей, поскольку кулоновские и адронные сечения взаимодействий относительно малы в сравнении с плотностью галактической колонны. Высокоэнергетичные космические лучи следуют своему баллистическому движению, а нет отклоняются межзвёздным магнитным полем, чьи типичные величины составляют B= 3*10**(-6) гауссов. Это происходит, потому что энергия магнитного поля, на которое набегает суженный в створ пучок космических лучей на типичных галактических расстояниях, гораздо меньше, чем кинетическая энергия пучка. Таким образом, пучок космических лучей сметает на своём пути магнитное поле и следует прямой баллистической траектории сквозь межзвёздную среду. (Те же самые рассуждения, если применить их к удалённым гамма-всплескам, приводят к противоположному выводу: никаких космических лучей от удалённых гамма-всплесков не сопровождает прибытие пучка гамма-лучей.)
Поток направленного пучка высокоэнергетичных космических лучей на расстоянии от гамма-всплеска предсказывается моделью пушечных ядер гамма-всплесков и составляет by F ~ Еку2/4я d2 ~ 1020 (LY/d2) эрг. / кв. см., где типичные значения кинетической энергии джетов равны 10**51 эрг и y = 10**3, что было получено на основании анализа пушечных ядер на основании данных длинных гамма-всплесков. Наблюдение послесвечения гамма-всплесков показывают, что обычно требуется день или два, чтобы пушечные ядра потеряли примерно половину своей изначальной кинетической энергии, то есть чтобы их Лоренц фактор убыл в половину. Эта энергия превращается в космические лучи с типичным Лоренц фактором y(cr)=y**2, чьё время прибытия на галактических расстояниях запаздывает по отношению фотонам послесвечения на пренебрежимо малое время At ~ d/cy2CR. Таким образом, прибытие большей части энергии космических лучей практически совпадает с прибытием фотонов послесвечения. Таким образом, для типичного длинного гамма-всплеска на галактическом расстоянии в 25 000 световых лет, который виден под типичным углом 10**(-3) радиан, высвобождение энергии в атмосфере за счёт пучка космических лучей составит 10**11 эрг/ кв. см., что на три порядка больше, чем энергия гамма-лучей. (кинетическая энергия электронов в джете превращается в конический пучок гамма-лучей, тогда как большая часть кинетической энергии протонов превращается в конический пучок космических лучей примерно с тем же углом открытия).
Пучок энергетичных космических лучей, сопровождающих галактический гамма-всплеск, смертелен для жизни на землеподобных планетах. Когда высокоэнергетичные космические лучи с энергией E сталкиваются с атмосферой под углом к зениту B, они создают поток мюонов, чьё число примерно составляет N(E > 25 GeV) ~ 9.14[Ep/TeV]0.757/cos B (Drees et al., 1989). Соответственно, типичный гамма-всплеск, созданный джетом с энергией E=10*51 эрг на галактическом расстоянии 25 000 св. лет, видимый под углом 10**(-3), будет сопровождаться потоком мюонов на уровни поверхности F(E > 25 GeV) ~ 3 x 1011cm~2. Таким образом, выделение энергии на уровне поверхности в биологических материалах, под влиянием атмосферных мюонов, создаваемое среднестатистическим гамма-всплеском около центра галактики, составит 1.4 x 1012 MeV/гр. Это составляет примерно 75 смертельных для человека доз. Летальные дозы для других позвоночных и для насекомых могут быть в несколько раз меньше или в 7 раз больше, соответственно. Таким образом, космические лучи от галактических гамма-всплесков могут принести с собой смертельную дозу атмосферных мюонов для большинства видов живых существ на Земле. По причине большого пробега мюонов (4[E^/GeV]m) в воде, их поток смертелен, даже в сотнях метрах подводой и под землёй для космических лучей, чей источник находится достаточно высоко над горизонтом. Таким образом, в отличие от других предложенных механизмов вымирания, космические лучи от галактических гамма-всплесков могут приводить к массовым вымираниям глубоко под водой и под землёй. Хотя полпланеты находится в тени потока космических лучей, ее вращение подвергает большую часть ее поверхности воздействию космических лучей, половина из которых прибудет в течение двух дней после гамма-лучей. Дополнительные эффекты, увеличивающие летальность космических лучей для всей планеты, включают в себя:

1. Испарение значительной части атмосферы за счёт высвобождения энергии космических лучей.
2. Глобальные пожары, вызванные нагревом атмосферы и ударными волнами, создаваемыми космическими лучами в атмосфере.
3. Заражение окружающей среды радиоактивными ядрами, возникшими при разбивании атмосферных и грунтовых ядер частицами из ливней, вызванных космическими лучами, которые достигнут поверхности.
4. Исчезновение стратосферного озона, который вступит в реакцию с оксидом азота, созданным электронами, которые создадут космические лучи (значительное разрушение стратосферного озона наблюдалось при мощных солнечных вспышках, который генерировали энергетичные протоны.)
5. Значительные повреждения пищевых цепочек за счёт радиоактивного загрязнения и массового вымирания растительности из-за ионизирующей радиации (летальнее дозы радиации для деревьев и растений немного больше, чем дозы для животных, но всё же меньше, чем поток, оценки которого приведены выше – для всех, кроме самых живучих видов).

Таким образом, пучок космических лучей от галактической сверхновой/гамма-всплеска, направленный в нашу сторону, который прибывает сразу после гамма-всплеска, может убить, в относительно короткое время (в течение месяцев), большинство видов живых существ на нашей планете.

Перевод: А.В.Турчин
http://www.proza.ru/2009/01/14/773



© kolesnikov-sergey2010

Бесплатный конструктор сайтов - uCoz